p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.340C23, C23.476C24, C22.2592+ 1+4, C42⋊8C4⋊47C2, C23.55(C4○D4), (C2×C42).71C22, C23.Q8⋊32C2, C23.8Q8⋊70C2, C23.34D4⋊38C2, C23.11D4⋊47C2, (C22×C4).107C23, (C23×C4).122C22, C24.C22⋊90C2, C23.84C23⋊5C2, C23.10D4.24C2, C23.23D4.38C2, (C22×D4).176C22, C23.63C23⋊93C2, C2.28(C22.32C24), C2.57(C22.45C24), C2.C42.491C22, C2.62(C22.47C24), C2.87(C23.36C23), (C4×C22⋊C4)⋊16C2, (C2×C4).154(C4○D4), (C2×C4⋊C4).323C22, C22.352(C2×C4○D4), (C2×C22⋊C4).191C22, SmallGroup(128,1308)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.340C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=bcd, g2=cb=bc, eae-1=gag-1=ab=ba, ac=ca, ad=da, faf=acd, bd=db, geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef=de=ed, df=fd, dg=gd, gfg-1=cdf >
Subgroups: 468 in 234 conjugacy classes, 92 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C4×C22⋊C4, C23.34D4, C42⋊8C4, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C23.10D4, C23.Q8, C23.11D4, C23.84C23, C24.340C23
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C23.36C23, C22.32C24, C22.45C24, C22.47C24, C24.340C23
(2 12)(4 10)(5 7)(6 39)(8 37)(13 43)(15 41)(17 19)(18 46)(20 48)(21 23)(22 50)(24 52)(26 56)(28 54)(30 60)(32 58)(33 61)(34 36)(35 63)(38 40)(45 47)(49 51)(62 64)
(1 11)(2 12)(3 9)(4 10)(5 40)(6 37)(7 38)(8 39)(13 43)(14 44)(15 41)(16 42)(17 47)(18 48)(19 45)(20 46)(21 51)(22 52)(23 49)(24 50)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 63)(34 64)(35 61)(36 62)
(1 53)(2 54)(3 55)(4 56)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(13 58)(14 59)(15 60)(16 57)(17 62)(18 63)(19 64)(20 61)(29 44)(30 41)(31 42)(32 43)(33 48)(34 45)(35 46)(36 47)(37 52)(38 49)(39 50)(40 51)
(1 25)(2 26)(3 27)(4 28)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 30)(14 31)(15 32)(16 29)(17 34)(18 35)(19 36)(20 33)(21 38)(22 39)(23 40)(24 37)(41 58)(42 59)(43 60)(44 57)(45 62)(46 63)(47 64)(48 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 20)(2 34)(3 18)(4 36)(5 58)(6 42)(7 60)(8 44)(9 48)(10 62)(11 46)(12 64)(13 21)(14 39)(15 23)(16 37)(17 26)(19 28)(22 31)(24 29)(25 33)(27 35)(30 38)(32 40)(41 49)(43 51)(45 54)(47 56)(50 59)(52 57)(53 61)(55 63)
(1 43 27 58)(2 14 28 29)(3 41 25 60)(4 16 26 31)(5 48 51 63)(6 19 52 34)(7 46 49 61)(8 17 50 36)(9 15 55 30)(10 42 56 57)(11 13 53 32)(12 44 54 59)(18 21 33 40)(20 23 35 38)(22 64 37 45)(24 62 39 47)
G:=sub<Sym(64)| (2,12)(4,10)(5,7)(6,39)(8,37)(13,43)(15,41)(17,19)(18,46)(20,48)(21,23)(22,50)(24,52)(26,56)(28,54)(30,60)(32,58)(33,61)(34,36)(35,63)(38,40)(45,47)(49,51)(62,64), (1,11)(2,12)(3,9)(4,10)(5,40)(6,37)(7,38)(8,39)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62), (1,53)(2,54)(3,55)(4,56)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,58)(14,59)(15,60)(16,57)(17,62)(18,63)(19,64)(20,61)(29,44)(30,41)(31,42)(32,43)(33,48)(34,45)(35,46)(36,47)(37,52)(38,49)(39,50)(40,51), (1,25)(2,26)(3,27)(4,28)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,30)(14,31)(15,32)(16,29)(17,34)(18,35)(19,36)(20,33)(21,38)(22,39)(23,40)(24,37)(41,58)(42,59)(43,60)(44,57)(45,62)(46,63)(47,64)(48,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20)(2,34)(3,18)(4,36)(5,58)(6,42)(7,60)(8,44)(9,48)(10,62)(11,46)(12,64)(13,21)(14,39)(15,23)(16,37)(17,26)(19,28)(22,31)(24,29)(25,33)(27,35)(30,38)(32,40)(41,49)(43,51)(45,54)(47,56)(50,59)(52,57)(53,61)(55,63), (1,43,27,58)(2,14,28,29)(3,41,25,60)(4,16,26,31)(5,48,51,63)(6,19,52,34)(7,46,49,61)(8,17,50,36)(9,15,55,30)(10,42,56,57)(11,13,53,32)(12,44,54,59)(18,21,33,40)(20,23,35,38)(22,64,37,45)(24,62,39,47)>;
G:=Group( (2,12)(4,10)(5,7)(6,39)(8,37)(13,43)(15,41)(17,19)(18,46)(20,48)(21,23)(22,50)(24,52)(26,56)(28,54)(30,60)(32,58)(33,61)(34,36)(35,63)(38,40)(45,47)(49,51)(62,64), (1,11)(2,12)(3,9)(4,10)(5,40)(6,37)(7,38)(8,39)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62), (1,53)(2,54)(3,55)(4,56)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,58)(14,59)(15,60)(16,57)(17,62)(18,63)(19,64)(20,61)(29,44)(30,41)(31,42)(32,43)(33,48)(34,45)(35,46)(36,47)(37,52)(38,49)(39,50)(40,51), (1,25)(2,26)(3,27)(4,28)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,30)(14,31)(15,32)(16,29)(17,34)(18,35)(19,36)(20,33)(21,38)(22,39)(23,40)(24,37)(41,58)(42,59)(43,60)(44,57)(45,62)(46,63)(47,64)(48,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20)(2,34)(3,18)(4,36)(5,58)(6,42)(7,60)(8,44)(9,48)(10,62)(11,46)(12,64)(13,21)(14,39)(15,23)(16,37)(17,26)(19,28)(22,31)(24,29)(25,33)(27,35)(30,38)(32,40)(41,49)(43,51)(45,54)(47,56)(50,59)(52,57)(53,61)(55,63), (1,43,27,58)(2,14,28,29)(3,41,25,60)(4,16,26,31)(5,48,51,63)(6,19,52,34)(7,46,49,61)(8,17,50,36)(9,15,55,30)(10,42,56,57)(11,13,53,32)(12,44,54,59)(18,21,33,40)(20,23,35,38)(22,64,37,45)(24,62,39,47) );
G=PermutationGroup([[(2,12),(4,10),(5,7),(6,39),(8,37),(13,43),(15,41),(17,19),(18,46),(20,48),(21,23),(22,50),(24,52),(26,56),(28,54),(30,60),(32,58),(33,61),(34,36),(35,63),(38,40),(45,47),(49,51),(62,64)], [(1,11),(2,12),(3,9),(4,10),(5,40),(6,37),(7,38),(8,39),(13,43),(14,44),(15,41),(16,42),(17,47),(18,48),(19,45),(20,46),(21,51),(22,52),(23,49),(24,50),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,63),(34,64),(35,61),(36,62)], [(1,53),(2,54),(3,55),(4,56),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(13,58),(14,59),(15,60),(16,57),(17,62),(18,63),(19,64),(20,61),(29,44),(30,41),(31,42),(32,43),(33,48),(34,45),(35,46),(36,47),(37,52),(38,49),(39,50),(40,51)], [(1,25),(2,26),(3,27),(4,28),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,30),(14,31),(15,32),(16,29),(17,34),(18,35),(19,36),(20,33),(21,38),(22,39),(23,40),(24,37),(41,58),(42,59),(43,60),(44,57),(45,62),(46,63),(47,64),(48,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,20),(2,34),(3,18),(4,36),(5,58),(6,42),(7,60),(8,44),(9,48),(10,62),(11,46),(12,64),(13,21),(14,39),(15,23),(16,37),(17,26),(19,28),(22,31),(24,29),(25,33),(27,35),(30,38),(32,40),(41,49),(43,51),(45,54),(47,56),(50,59),(52,57),(53,61),(55,63)], [(1,43,27,58),(2,14,28,29),(3,41,25,60),(4,16,26,31),(5,48,51,63),(6,19,52,34),(7,46,49,61),(8,17,50,36),(9,15,55,30),(10,42,56,57),(11,13,53,32),(12,44,54,59),(18,21,33,40),(20,23,35,38),(22,64,37,45),(24,62,39,47)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4V | 4W | 4X | 4Y | 4Z |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C4○D4 | 2+ 1+4 |
kernel | C24.340C23 | C4×C22⋊C4 | C23.34D4 | C42⋊8C4 | C23.8Q8 | C23.23D4 | C23.63C23 | C24.C22 | C23.10D4 | C23.Q8 | C23.11D4 | C23.84C23 | C2×C4 | C23 | C22 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 12 | 8 | 2 |
Matrix representation of C24.340C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,3,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;
C24.340C23 in GAP, Magma, Sage, TeX
C_2^4._{340}C_2^3
% in TeX
G:=Group("C2^4.340C2^3");
// GroupNames label
G:=SmallGroup(128,1308);
// by ID
G=gap.SmallGroup(128,1308);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,792,758,723,675,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=b*c*d,g^2=c*b=b*c,e*a*e^-1=g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f=a*c*d,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f=d*e=e*d,d*f=f*d,d*g=g*d,g*f*g^-1=c*d*f>;
// generators/relations